Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza
نویسندگان
چکیده
Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5-5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93-11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation.
منابع مشابه
Functional and Structural Divergence of an Unusual LTR Retrotransposon Family in Plants
Retrotransposons with long terminal repeats (LTRs) more than 3 kb are not frequent in most eukaryotic genomes. Rice LTR retrotransposon, Retrosat2, has LTRs greater than 3.2 kb and two open reading frames (ORF): ORF1 encodes enzymes for retrotransposition whereas no function can be assigned to ORF0 as it is not found in any other organism. A variety of experimental and in silico approaches were...
متن کاملRapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species
The dynamics of long terminal repeat (LTR) retrotransposons and their contribution to genome evolution during plant speciation have remained largely unanswered. Here, we perform a genome-wide comparison of all eight Oryza AA-genome species, and identify 3911 intact LTR retrotransposons classified into 790 families. The top 44 most abundant LTR retrotransposon families show patterns of rapid and...
متن کاملDoubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice.
Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a "copy and paste" mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorl...
متن کاملAnalysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution.
Analysis of LTR retrotransposon structures in five diploid angiosperm genomes uncovered very different relative levels of different types of genomic diversity. All species exhibited recent LTR retrotransposon mobility and also high rates of DNA removal by unequal homologous recombination and illegitimate recombination. The larger plant genomes contained many LTR retrotransposon families with >1...
متن کاملNatural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome.
Although the proliferation of LTR retrotransposons can cause major genomic modification and reorganization, the evolutionary dynamics that affect their frequency in host genomes are poorly understood. We analyzed patterns of genetic variation among LTR retrotransposons from Oryza sativa to investigate the type of selective forces that potentially limit their amplification and subsequent populat...
متن کامل